5.1 Integer Exponents \& Scientific Notation

Written by: Cindy Alder

Objectives:

- Use the product rule for exponents.
- Define 0 and negative exponents.
- Use the quotient rule for exponents.
- Use the power rules for exponents.
- Simplify exponential expressions.
- Use the rules for exponents with scientific notation.

Product Rule for Exponents

- Consider:

$$
\begin{aligned}
& 2^{5} \cdot 2^{3}= \\
& x^{4} \cdot x^{7}=
\end{aligned}
$$

Product Rule for Exponents

If m and n are natural numbers and a is any real number, then

When multiplying like bases, keep the base and add the exponents.

Example 1

Apply the produce rule, if possible, in each case.
a) $m^{8} \cdot m^{6}$
b) $\left(-5 y^{4}\right)\left(-9 y^{5}\right)$
c) $m^{5} \cdot p^{4}$
d) $\left(-3 x^{2} y^{3}\right)\left(7 x y^{4}\right)$

Zero Exponent

- Consider:

$$
4^{2} \cdot 4^{0}=
$$

Zero Exponent

If a is any nonzero real number, then

Any non-zero base raised to the power of 0 equals 1 .
*The expression 0^{0} is undefined.

Example 2

Evaluate.
a) 5^{0}
b) -5^{0}
c) $(-5 x)^{0}$
d) $10^{0}-9^{0}$
[Negative Exponents

Consider:

$$
8^{2} \cdot 8^{-2}=
$$

Negative Exponents

For any natural number n and any nonzero real number a,

Negative exponents lead to reciprocals.

- Write with only positive exponents:
a) 6^{-5}
b) $-7 p^{-4}$

Example 3

Write with only positive exponents.
a) $(5 z)^{-3}$
b) $5 z^{-3}$
c) $(2 x)^{-4}$
d) $4^{-1}-2^{-1}$

Special Rules for Negative Exponents

For any natural number n and any nonzero real number a,

Negative exponents lead to reciprocals.
Evaluate.

$$
\text { a) } \frac{1}{4^{-3}}
$$

$$
\text { b) } \frac{3^{-3}}{9^{-1}}
$$

Quotient Rule for Exponents

- Consider:

$$
\frac{a^{8}}{a^{3}}
$$

Quotient Rule for Exponents

If a is any nonzero real number and m and n are integers, then

When dividing like bases - keep the base and subtract the exponents. (top exponent - bottom exponent)

Example 4

Write with only positive exponents.
a) $\frac{x^{7}}{x^{2}}$
b) $\frac{5^{-6}}{5^{-8}}$
c) $\frac{m^{8}}{m^{13}}$
d) $\frac{x^{3}}{y^{5}}$

Power Rule for Exponents

Consider:
$\left(3^{4}\right)^{2}=$
$(x y)^{4}=$
$(3)^{4}=$

Power Rules for Exponents

If a and b are real numbers and m and n are integers, then

To raise a power to a power, multiply the exponents.

To raise a product to a power, raise each factor to that power.

To raise a quotient to a power, raise the numerator and denominator to that power.

Example 5

Simplify using the power rules.
$\begin{array}{ll}\left(r^{5}\right)^{4} & \text { b) }\left(\frac{3}{4}\right)^{3}\end{array}$
c) $\begin{array}{ll}\left(-3 y^{5}\right)^{2} & \text { d) }\left(-\frac{2 m^{5}}{z}\right)^{3}\end{array}$

Special Rules for Negative Exponents (Continued)

If $a \neq 0$ and $b \neq 0$ and n is an integer, then

Any non-zero number raised to the negative nth power is equal to the reciprocal of that number raised to the nth power.

- Write with only positive exponents then evaluate.

$$
\begin{array}{ll}
\left(\frac{2}{3}\right)^{-4} & \text { b) }\left(\frac{4 x}{5}\right)^{-3}
\end{array}
$$

Example 6

Simplify each exponential expression so that no negative exponents appear in the final answer.

$$
\text { a) } x^{-4} \cdot x^{-6} \cdot x^{8} \quad \text { b) } \frac{\left(2 m^{2} n\right)^{2}}{m^{3} n^{2}}
$$

Example 7

Simplify each exponential expression so that no negative exponents appear in the final answer.

$$
\text { a) }\left(\frac{3 x^{2}}{y}\right)^{2}\left(\frac{4 x^{3}}{y^{-2}}\right)^{-1} \quad \text { b) }\left(-\frac{4 m^{5} n^{4}}{24 m n^{-7}}\right)^{-2}
$$

Scientific Notation

- Numbers occurring in science are often extremely large (such as the distance from Earth to the Sun, $93,000,000$ miles) or extremely small (the wavelength of yellow-green light, approximately 0.0000006 m .) Because of the difficulty of working with many zeros, scientists often express such numbers with exponents, using a form called scientific notation.

Scientific Notation

A number is written in scientific notation when it is expressed in the form

Scientific Notation

- Using your calculator (or cell phone) find:

$$
5,000,000 \times 6,000,000,000,000
$$

- Numbers in scientific notation with exponents are relatively \qquad .
- Numbers in scientific notation with exponents are relatively \qquad -

Example 8

Write each number in scientific notation.
a) 0.0571
b) $-2,140,000,000$
c) 843
d) 0.000062

Example 9

Write each number in standard notation.
a) 2.51×10^{3}
b) -6.8×10^{-4}
c) -5.7×10^{-2}
d) 1.083×10^{0}

Example 10

Evaluate. Write answers in scientific notation and in standard notation.

$$
\text { a) }\left(3 \times 10^{5}\right)\left(5 \times 10^{-2}\right) \quad \text { b) } \frac{4.8 \times 10^{2}}{2.4 \times 10^{5}}
$$

Example 11

Evaluate. Write answers in scientific notation and in standard notation.

$$
\frac{1,920,000 \times 0.0015}{0.000032 \times 45,000}
$$

Example 12

If the speed of light is approximately $3.0 \times 10^{5} \mathrm{~km} / \mathrm{sec}$, how many seconds does it take light to travel approximately $1.5 \times 10^{8} \mathrm{~km}$ from the Sun to the Earth?

